Use of hy-products of the brewing industry as alternative protein and lipid sources in gilthead seabream (*Sparus aurata* L.) diets M. Ángeles. Esteban^{1*}, Salvadora Martínez¹, Patricia Morcillo¹, Francisco A. Guardiola¹, Alberto Cuesta¹, Juan A. López², Luciano Vilchez³ Este Innate Innute System Group. Department of Cell Biology and Ektology, Faculty of Biology, University of Marcin, 3000 Marcin, Spain. Estering de Levante S.A. El Puntal, Marcin, Spain. Biotheson, S.L.J. Padul, Gramada, Spain.

Introduction

Aquaculture consumes large amounts of food to produce a kilo of fish.
The increase of farmed fish has increased the demand for fish meal and oil as the main source of protein for food

Materials and Methods

Experimental design

Fish feeding ad libitum twice each day

bounded of protonic for 1000.

Aim

For use by-products of the brewing industry as all alternative protein and lipid sources for fish diets.

By-products of the brewing industry included in the experimental diets:
yeast, grain and root (experimental diet 1)
yeast and grain (experimental diet 2)

Experimental diet 1

Experimental diet 2

Blood analysis of fish fed experimental diets have altered levels of creatine kinase, sodium and potassium, respect to the control fish (fed commercial diet).

Parameter	Control diet	Experimental diet 2	Disorder associated to each parameter
spartato aminotransferase (U ml ⁻¹)	63.18 47.6	110 22	Liver disease, muscle damage
Biliar acids (µmol L-1)	0.00 0	0.00 0	Hepatobiliary disease
Creatine quinase (U ml ⁻¹)	2092.09 231	6240 354	Muscle damage
J ric acid (mg dL-1)	0.00 0	0.00 0	Renal health
Glucose (mg dL-1)	30.52 5	59 2	Severe liver disease; pancreatic disease
Calcium (mg dL ⁻¹)	6.15 0.37	10.65 0.25	Renal and nutritional disease; fluid balance
Phosphorum (mg dL-1)	4.80 0.42	8.65 1.35	Egg production; bone and renal disease
Cotal proteins (g dL-1)	1.76 0.08	2.7 0.1	Liver, gastrointestinal, and kidney disease; dehydration
lbumin (g dL-1)	0.93 0.03	1.5 0.2	Liver and kidney disease
Globulin (g dL-1)	0.83 0.05	1.2 0.1	Dehydration; antigenic stimulation
Potasium (mM)	4.32 0.23	8.3 0.2	Indicator of cell lysis, and fluid balance
odium (mM)	85.76 2.5	170 4	Indicator of fluid balance and dehydration

Enterocytes from fish fed the experimental diets had a very vacuolated cytoplasm indicating a possible enteritis.

Conclusions

Fish fed experimental diets loss weight, respect to control fish
Blood tests revealed a state of dehydration of the specimens
These effects on fish seem to be due to the high

Micrographs of anterior gut sections from gilthead seabream fed for 7 days control (A) and experimental diet 1 (B).

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD