THE WEIGHTED MEAN AND ITS IMPROVED DISPERSION

E.L. GRIGORESCU

National Institute for Nuclear Physics and Engineering, 30 Reactorului Str, P.O.Box MG-6, RO-077125 Bucharest-Magurele, Romania, E-mail: elgrigorescu@yahoo.com

INTRODUCTION

The weighted mean $\overline{x_w}$ appears when a physical quantity is measured by different methods in different laboratories, producing different x_i results. It is the case of determination of physical constants (as Nuclear Data analysis), International Comparisons of radioactive sources and still others. (The formula 1) with w_i - absolute weights and p_i- relative weights.

A relation exists (2) with σ_i the individual standard deviations including possible systematic uncertainty as which do not affect the logical (1). Formula (2) is obtained ith some complicated calculations in [1], [2], [3]

THE DISPERSIONS

To $x_{\rm w}$, two different dispersions are associated, D₁ (internal) and D₂ (external). The formula (3) is obtained by error propagation applied on formula (1) and is valid for small σ_v . It supposes a satisfactory distribution of x_i results. The formula (4) is the classical formula, valid for any σ_i and then, to be recommended In literature suggestions are made, to take as valid the grater from D1, D2. The ratio D_2/D_1 is in formula (5). For $(D_2/D_1)>1$ is sufficient that a single x_i produces $r_i > 1$ or add many r_i not greater

nan one. So D₂ is the confident on

A SIMPLE CALCULUS FOR X_{W}

In principle \mathbf{x}_{w} should produce as great deviations $(\mathbf{x}_{i} - \overline{\mathbf{x}}_{w})$, as the associated σ_{i} are areat

For equal treatment of these deviations, relative deviations may be considered the formula (6) which express the deviations in units σ_{μ} . They may be appreciated as "classical" deviations for a single σ .

The n values from (6) must have same near (equivalent) values.

Their arithmetical mean tends to zero (both positive and negative deviations). Thus, as in the case of a unique σ , we may reach the minimum of the expression in formula (7).

The annulation of the x derivative for $\frac{x_{y}}{x_{y}}$, gives the formula (8) and finally, the formula (9) where formula (10) (the well known formulae). This calculus accepts great σ_{i} even with systematic uncertainties.

AN IMPROVED DISPERSION

The value σ_i offered by the experimenters, represent the experimental standard deviations which fluctuates together x,

In practice the theoretical unknown values σ_i , are replaced in formulae (1), (2) by the experimental value s_i^2 , which fluctuate together with x_i . A dispersion D₃ is obtained considering this, by error propagation, and added to D1, D2 First are calculates the formula (11).

Then the formula (12) with $\varepsilon(w)$ - the relative standard deviation for w_i and n_i is the values of measurements which provided x_i . For (12) it was used the equality (13). See [4] [5].

The relation (13) is valid for s^2 related to both a simple result as a complex one. It is obtained from y

 $\epsilon(s^2)$ express the fluctuation of the only statistical part of s^2 (systematic components do not fluctuate) and so formulae (13) may be applied.

Adding D₁ with D₃, a correct D_{1c} results the formula (14).

If σ_i are great, w_i are small but the spread $(x_i - \overline{x_w})$ may be great, and vice-versa. So, to neglect D_3 , n_i must have same values

The corrected D_{2c} is obtained as the formula (15)

Again, to neglect D₃, n_i must have same values.

Many p_i values (many x_i) produce small D_3 . The importance of D_3 depends of a given ncrete case

CONCLUSIONS

σ_i may contain systematic uncertainties.

- D₂ is more to trust than D₁.

- A simple calculus may provide formulae for $\overline{x_w}$ and w_i

- One may add to D₁, D₂, a D₃ representing the fluctuation of w₁.

With n_i great, D₃ may be practically neglected

11 G.F Knoll. Radiation Detection and Measurement, Wiley, New York, 1989

Nicolae Ghiordanescu, Calculations methods and simulations in nuclear physics (in Romanian), editura Universitatii din [3] William Feller, An Introduction to Probability Theory and its Applications, John Wiley & Sans Inc. New York, 1957.

[4] Nicolae Mihaila, Introduction to Probabilistic Theory and Mathematic Statistic, editura Didactica si Pedagogica (in Romanian Bucuresti 1963.

E.L. Grigorescu, A demonstration for the Statistical Normal Distribution of Experimental Results (in Romanian), Romani al of Physics. vol. 72. nr. 1-2. p205-213. 2012

dw.

 $(\sum w_i)^2$

 $\overline{x}_w = \frac{\sum w_i x_i}{\sum w_i} = \sum p_i x_i$

 $w_i = \frac{1}{\sigma_i^2}$

 $D_1 = \frac{1}{\sum w}$

 $D_2 = \underbrace{\sum w_i \left(x_i - \overline{x}_w \right)}_{i}$

 $\frac{D_2}{D_i} = \sum w_i (x_i - \bar{x}_w)^2 = \sum \frac{(x_i - \bar{x}_w)^2}{\sigma^2} = \sum r_i^2$

 $d_i = \frac{x_i - \overline{x}_w}{1 - \overline{x}_w}$

 $\sum_{i=1}^{n} \frac{(x_i - \overline{x}_w)^2}{\sigma_i^2}$

 $\sum_{i=1}^{n} \frac{(x_i - \bar{x}_w)}{\sigma_i^2} = \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2} - \bar{x}_w \sum_{i=1}^{n} \frac{1}{\sigma_i^2} = 0$

 $\overline{x}_w = \frac{\sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}} = \sum p_i x_i$

 $\frac{n}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}}$

 $\partial \overline{x}_w _ x_i \sum w_i - \sum w_i x_i _ x_i - \overline{x}_w$

 $D_{3} = \frac{\sum (x_{i} - \bar{x}_{w})^{2} \sigma^{2}(w_{i})}{\sqrt{2}} = \frac{\sum w_{i}^{2} (x_{i} - \bar{x}_{w})^{2} \varepsilon^{2}(w_{i})}{\sqrt{2}} - \frac{\sum w_{i} p_{i} (x_{i} - \bar{x}_{w})^{2} \frac{2}{n_{i}}}{\sqrt{2}}$

 $\varepsilon(w_i) = \varepsilon(s_i^2) = \sqrt{\frac{2}{n}}$

 $(\sum w_i)^2$

 $(\sum w_i)^2$

 $p_i =$

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)