SYNTHESIS AND ANALYSIS OF NATURAL FIBERS REINFORCEMENT OF SYNTHETIC

RESINS

5th World Congress on Materials Science & Engineering June 13-15, 2016 Alicante, Spain

International

Mr. KRANTHI KUMAR GUDURU CJITS-WARANGAL, INDIA

E-mail: kranthicjits1@gmail.com

INTRODUCTION

In this research kenaaf fiber and polmera fibers are treated with NaOH solution and the fibers are properly reinforced with polypropylene resin and epoxy resin respectively in a matrix form to prepare hybrid composite laminates of 6mm thicknesses thereafter to determine the mechanical^[7-8] properties like flexural strength flexural modulus, tensile strength, tensile modulus and compressive strength with suitable specimens with ASTM E - 08 for tensile properties and ASTM D -790 for flexural properties as per standards. By using ANSYS through finite element analysis is done for various load and result factors. The surface is analyzed by SEM test.

MATERIALS & METHODS

Fig.3 Treatment of Fiber in 2% NaOH solution

Fig. 5 Kenaf + Polypropylene laminate Fig. 6 Polmera + Epoxy laminate

Table: 1 Tensile Test Observations		
Specimen	Polmera with	Kenaf with
Description	Epoxy	Polypropelene
Load at Peak (N)	3.345	4.5
Tensile Strength(N/mm ²)	15.529	21.17
Load at Break(N)	3.27	5.8
% of Elongation	3.985	5.22
Tensile modulus(N/mm ²)	528.5	796.2

Table: 2 Flexural test Observations			
Specimen Description	Polmera with Epoxy	Kenaf with Polypropelene	
Flexural modulus(N/mm ²)	4580	2322	
Flexural strength(N/mm ²)	125	88	
Deflection(mm)	4	5	
Peak load(N)	76	41	

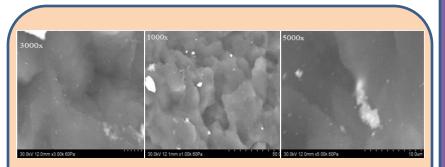


Fig.13 SEM analysis on the surfaces of the polypropylene resin with Kenaaf fiber shows the fine distribution of fiber in resin in matrix with the required resolutions.

RESULTS

CONCLUSION

REFERENCES

For the Tensile properties at the peak load, the tensile strength on polmera fiber with epoxy is 15.529 N/mm² which is less than the kenaaf fiber reinforced with the polypropylene is 25.17 N/mm² while in compared with Md. Roshnal Hossain[2], the strength is 844 N/mm² but as an anisotropic material, jute fiber has a large scatter in tensile properties depending on test specimen span length, test machine slippage and presence of inherent and surface of defects, according to Buenaventurada P. Calabia[12] the tensile strength is 30N/mm² cotton reinforced with poly(butylene succinate).

•For the flexural properties at the peak load, the flexural strength is 125N/mm² on polmera fiber with epoxy where as in the kenaaf fiber reinforced with the polypropylene is 88 N/mm², while according to Byoung-Ho Lee [11] the flexural strength of 31N/mm² for the kenaaf and polypropylene

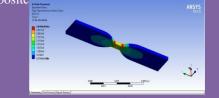


Fig.12 Equivalent stress of the composite specimen From the analysis it is observed that stress variation in the material shown by the different colors in the above image

The maximum stress is at red color that is

 σ max = 381.08MPa

The minimum stress is at the green color section that is σ min=57.331MPa

The actual value obtained by the calculations is less than the analysis value so the material Properties are accurate and accepted. M. HMd. Rashnal Hossain, Md. Aminul Islama, Aart Van Vuureab, Ignaas Verpoestb., "Tensile behavior of environment friendly jute epoxy laminatedcomposite", 5th BSME International Conference on Thermal Engineering, Procedia Engineering-2013, Vol.56 pp.782 – 788.

- Zgoul, S. M. Habali., "An Investigation into Plastic Pipes as Hot Water Transporters in Domestic and Industrial Applications" *Jordan Journal of Mechanical and Industrial Engineering-2009*, Vol.2, pp.197-200.
- Y-Xu, S.Kawata, K.kawai and S.Kuroda, "Thermomechanical properties of the silanized-kenaf/polystyrene composites", *Express Polymer Letters*-2009, Vol.3 (10) 657–664.
- Elias Randjbaran, Rizal Zahari, Nawal Aswan Abdul Jalil, and Dayang Laila Abang AbdulMajid., "Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing" *The Scientific World Journal* Vol.2014, pp.1-7.
- Kayode Feyisetan Adekunle., "Surface Treatments of Natural Fibres—A Review: Part 1", *Journal of Polymer Chemistry*-2015, Vol.5, pp.41-46.
- M. Tewari, V. K. Singh, P. C. Gope and A. K Chaudhary, "Evaluation of mechanical properties of bagasse glass fiber reinforced composite", *Journal of materials and environmental science-2012*, Vol. 3, pp.171-184.
- K.P. Ashik, Ramesh S. Sharma., "A Review on mechanical properties of natural fiber reinforced hybrid polymer composites", *Journal of minerals and materials characterization and engineering-2015*, Vol.3 pp.420-426.
- F. Z. Arrzkhiz, M. El Achaby, M. Malha., "Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene", Journal of Materials & Design-2015, Vol.43, pp.200-205.
- H Ku, H Wang, N Pattarachaiyakoop and M Trada., "A review on the tensile properties of natural fibre reinforced polymer composites" *International Journal of Composites Engineering-*2016, Vol.42(4), pp.856-873.
- 10. P.A.Udaykumar, Rajanna S, Ramalingaiah., "studies on effects of short coir fiber reinforcement on flexural properties of polymer matrix" *International Journal of Research in Engineering and Technology-2014*, Vol.3(2), pp.37-42.
- Byoung-Ho Lee, Hyun-Joong Kim, and Woong-Ryeol Yu Fabrication of Long and Discontinuous Natural Fiber Reinforced Polypropylene Biocomposites and Their Mechanical Properties" *Journal of Fibers and Polymers*-2009, Vol.10(1) pp.83-90