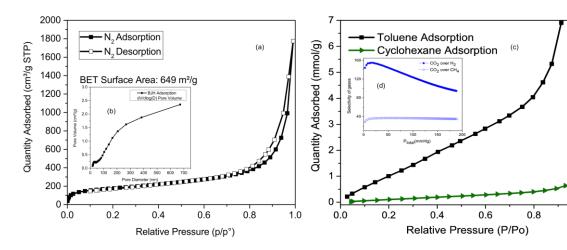
## Rare earth Chalcogels NaLnSnS<sub>4</sub> (Ln= Y, Gd, Tb) for Selective Adsorption of Volatile Hydrocarbons and Gases

Fatimah Edhaim, PhD., KAUST, SA Alexander Rothenberger, PhD., KAUST, SA

## Abstract (300 word limit)


The synthesis and characterization of the rare earth chalcogenide aerogels NaYSnS4, NaGdSnS4 and NaTbSnS4 is reported. Rare earth metal ions like  $Y^{3+}$  ,  $Gd^{3+}$  and  $Tb^{3+}$  react with the chalcogenide clusters [SnS<sub>4</sub>]<sup>4-</sup> in aqueous formamide solution forming extended polymeric networks by gelation. Aerogels obtained after supercritical drying have BET surface areas of 649  $m^2/g$  (NaYSnS<sub>4</sub>), 479  $m^2/g$ (NaGdSnS<sub>4</sub>) and 354  $m^2/g$  (NaTbSnS<sub>4</sub>). Electron microscopy and physisorption studies revealed that the new materials have pores in the macro (above 50 nm), meso (2-50 nm) and micro (below 2 nm) regions. These aerogels show higher adsorption of toluene vapor over cyclohexane vapor and  $CO_2$  over  $CH_4$  or  $H_2$ . The notable adsorption capacity for toluene (NaYSnS4: 6.90 mmol/g), (NaGdSnS4: 12.36 mmol/g) and (NaTbSnS4: 9.76 mmol/g) and high selectivity for gases  $NaYSnS_4$  ( $CO_2/H_2$ : 155 and  $CO_2/CH_4$ : 37),  $NaGdSnS_4$  ( $CO_2/H_2$ : 172 and  $CO_2/CH_4$ : 50) and NaTbSnS<sub>4</sub> ( $CO_2/H_2$ : 75 and  $CO_2/CH_4$ : 28) indicate potential future use of chalcogels in absorption-based gas or hydrocarbon separation processes.

## **Image**

## **Recent Publications (minimum 5)**

- Edhaim, F.; Rothenberger, A. (2016) Preferential Adsorption of Volatile Hydrocarbons on High Surface Area Chalcogels KMBiTe<sub>3</sub> (M = Cr, Zn, Fe), Submitted
- Edhaim, F.; Rothenberger, A. (2016) Rare earth Chalcogels NaLnSnS<sub>4</sub> (Ln= Y, Gd, Tb) for Selective Adsorption of Volatile Hydrocarbons and Gases, Submitted
- Isik, M.; Zulfiqar, S.; Edhaim, F.; Ruiperez, F.; Rothenberger, A.; Mecerreyes, D. (2016) Sustainable Poly(Ionic Liquids) for CO<sub>2</sub> Capture Based on Deep Eutectic Monomers. ACS Sustainable Chemistry & Engineering
- Edhaim, F.; Rothenberger, A. (2015) Adsorption of Volatile Hydrocarbons and Gases in Metal Polysulfide Chalcogels. PPM2015
- Shouwen, S; Zaidi, S; Mutairi, B; Shehry, A; Sitepu, H; Hamoud, S; Khaldi, F; Edhaim, F (2012) Quantitative XRD bulk and clay mineralogical determination of paleosol sections of Unayzah and Basal Khuff clastics in Saudi Arabia. Powder Diffraction

1.0



Characterization and properties of the NaYSnS $_4$  gel. (a) Nitrogen isotherm, (b) Pore–size distribution plot calculated by the BJH method from the adsorption isotherm, (c) Adsorption-Desorption isotherms of toluene and cyclohexane observed at room temperature in (a) NaYSnS $_4$ ,(d)Selectivity of CO $_2$  over H $_2$  and CO $_2$  over CH $_4$  in NaYSnS $_4$ 



Biography (150 word limit)

Ms Edhaim has been enrolled as a PhD student in the KAUST chemistry program since the beginning of 2013. She has completed the master portion with 36 credits. Since she joined KAUST, she adapted quickly to the academic working environment, progressed very well and has expanded her technical skills.

In the laboratory Ms Edhaim synthesizes new porous materials, which have promising applications in gas and hydrocarbon separation. She participated in a number of international conferences where her work was selected for oral and poster presentations and where she received very good feedback from colleagues. At present Ms Edhaim is publishing her papers with results for at least three research articles.

Ms Edhaim is an expert user of many analytical techniques incl. XRD, XRF, SEM, EDX, TGA, TDA, ICP, CPD, FTIR, UV and physical adsorption instrumentation.