

9th Global Summit and Expo on **Vaccines & Vaccination** November 30-December 02, 2015 San Francisco, USA

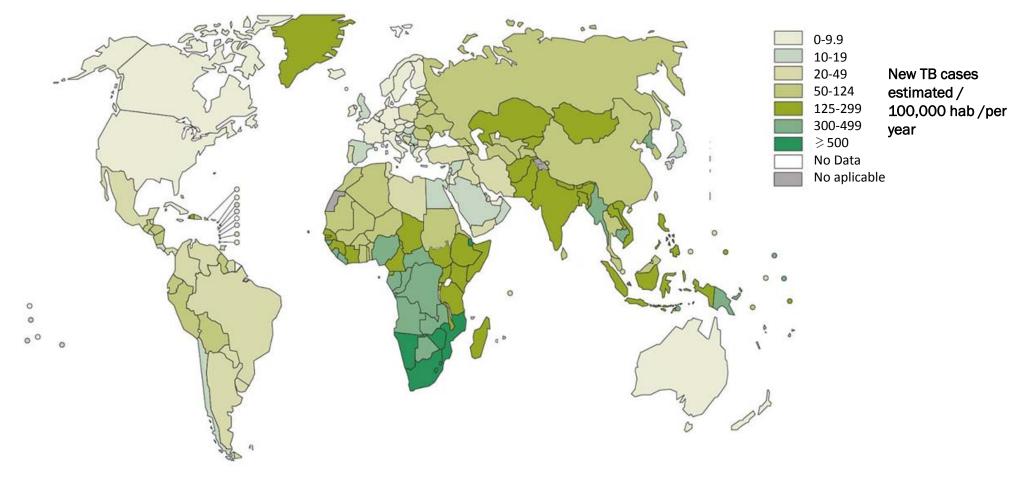
Proteoliposomes obtained from nonpathogenic mycobacteria as a protective vaccine candidates against Tuberculosis infection

Nadine Alvarez¹, Yanely Tirado¹, Alina Puig¹, Alicia Aguilar¹, Sonsire Fernandez¹, Jose Luis Perez¹, Reinaldo Acevedo¹, Maria Elena Sarmiento¹, Norazmi Mohd Nor², Rogelio Hernandez-Pando³, Armando Acosta¹.

¹Finlay Institute, Ave. 27 No. 19805, La Lisa. La Habana, AP. 16017, CP11600. Cuba ²School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia. ³Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubiran", D.F. Mexico.

e-mail: nalvarez@finlay.edu.cu

WHO TB Report 2014


TB CONTINUES TO BE AN ALARMING DISEASE !!!

- In 2013, 6.1 million TB cases were reported to WHO. Of these, 5.7 million were people newly diagnosed and another 0.4 million were already on treatment.
- Of the estimated 9 million people who developed TB.
- An estimated 1.1 million (13%) of the 9 million people who developed TB were HIV-positive.
- There were an estimated 550 000 new cases among children.
- Every 15 seconds 1 person dies of tuberculosis.

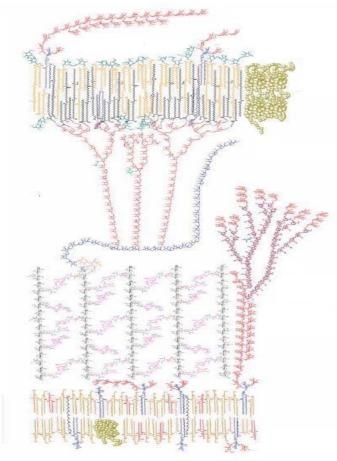
Estimated TB Incidence by Country - 2013

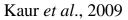
WHO TB Report 2014

Vaccines against Tuberculosis: BCG

- BCG, the only TB vaccine currently available
- BCG provides protection against disseminated TB in young children
- BCG does not protect against pulmonary TB, even when this is the most frequently and the responsable of disease transmisión
- Limited time of protection (10-20 years after vaccination)

There is an urgent need to develop a new vaccines against TB

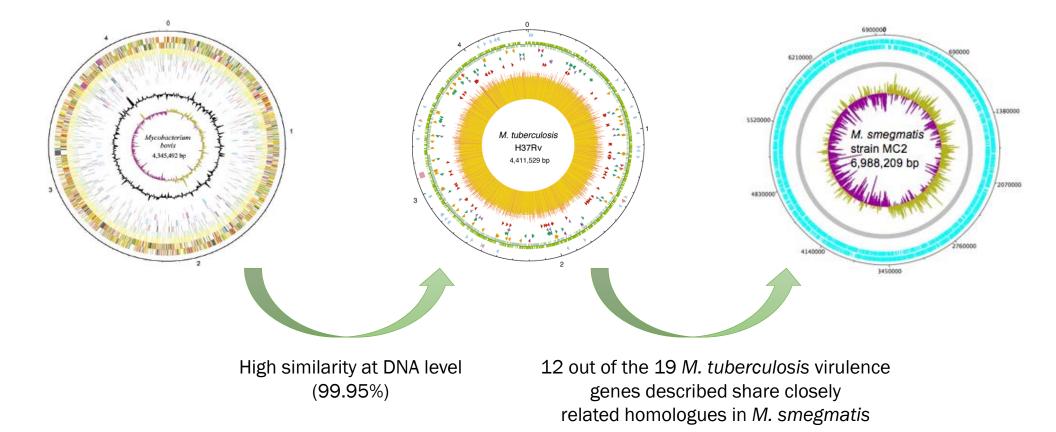

The development pipeline for new TB vaccines

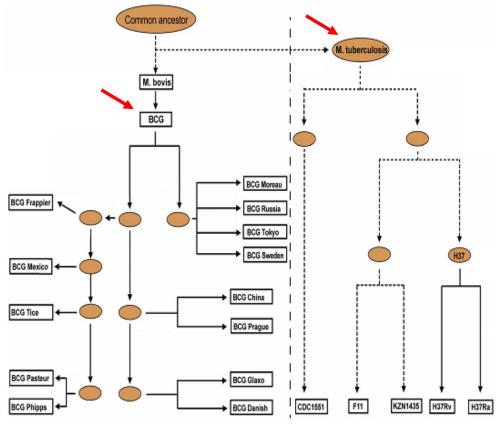

WHO TB Report 2014

Phase I	> Phase II	Phase IIb	Phase III
AdAg85A McMaster, CanSino	VPM 1002 Max Planck, VPM, TBVI,	MVA85A Oxford, Aeras	M. Vaccae Anhui Zhifei Longcom
MTBVAC TBVI, Zaragoza, Biofabri	Serum Institute H1+IC31	M72+AS01 GSK, Aeras	
ID93+GLA-SE Infectious Disease	SSI, TBVI, EDCTP, Intercell		
Research Institute (IDRI), Aeras	RUTI Archivel Farma, S.L.	15 vaccine candidates	
Crucell Ad35/MVA85A Crucell, Oxford, Aeras	H56: IC31 SSI, Aeras, Intercell		
DAR 901 Dartmouth, Aeras	H4: IC31 SSI, Sanofi-Pasteur,	TB Vaccine Types	
TB/FLU-04L Research	Aeras, Intercell	Viral-vectored: MVA85A, Crucell Ad35, AdAg85A, TB/FLU-04L Protein/adjuvant: M72, H1+IC31, H4: IC31, H56: IC31, ID93+GLA-SE rBCG: VPM 1002 Attenuated <i>M.Tb</i> : MTBVAC Mycobacterial – Whole cell or extract: <i>M. Vaccae</i> , RUTI, DAR-901	
Research Institute for Biological Safety	Crucell Ad35/ AERAS-402		
Problems, Research Institute on Influenza	Crucell, Aeras		

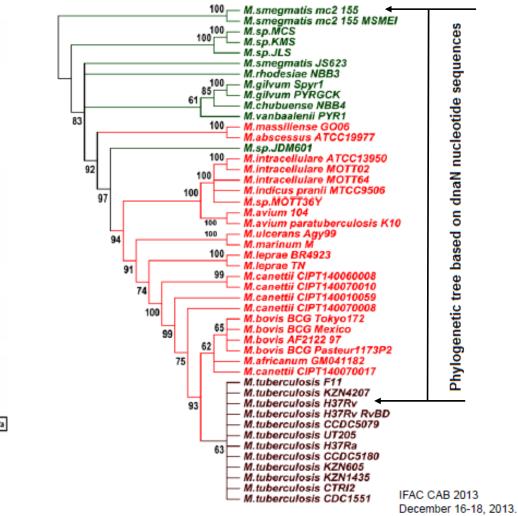
Proteins and lipids of Mtb cell wall are immunogenic and associated with protection

Hamasur et al., 2003. Mycobacterium tuberculosis arabinomannan-protein conjugates protect against tuberculosis.


Hamasur *et al.*, 2004. A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab') fragment prolong survival of mice infected with *Mycobacterium tuberculosis*.


Gilleron *et al.*, 2004. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with *Mycobacterium tuberculosis*.

Jeon et al., 2007. Protection of Mice against Mycobacterium tuberculosis infection by immunization with Aqueous Fraction of Triton X-100-Soluble Cell Wall Proteins.


Vilaplana et al., 2011. Prophylactic Effect of a Therapeutic Vaccine against TB Based on Fragments of Mycobacterium tuberculosis.

BCG and *M. smegmatis* are non-pathogenic mycobacteria with high levels of genomic and antigenic homology with *M. tuberculosis*

Garnier et al., 2003; Gomes et al., 2001; Zhang et al., 2013

One potential strategy to explore is the use of proteoliposomes (cell membrane extract) from non pathogenic mycobacteria as new vaccine candidates against TB

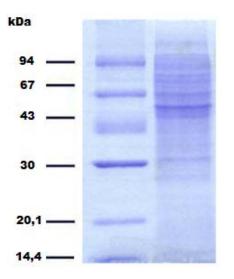
Advantages

- ✓ Technology available.
- ✓ Work with non pathogenic bacteria.
- ✓ Possible inclusion of lipids, glycolipids and lipoproteins associated with immunogenicity and protection.
- Possible presence of conserved proteins of mycobacteria, some of them associated with latency and *in vivo* expression.

Although there are several studies that report the immunogenic properties of proteoliposomes, at present there are few proteoliposome based vaccines and none against *M. tuberculosis*.

Obtention and characterization of proteoliposomes

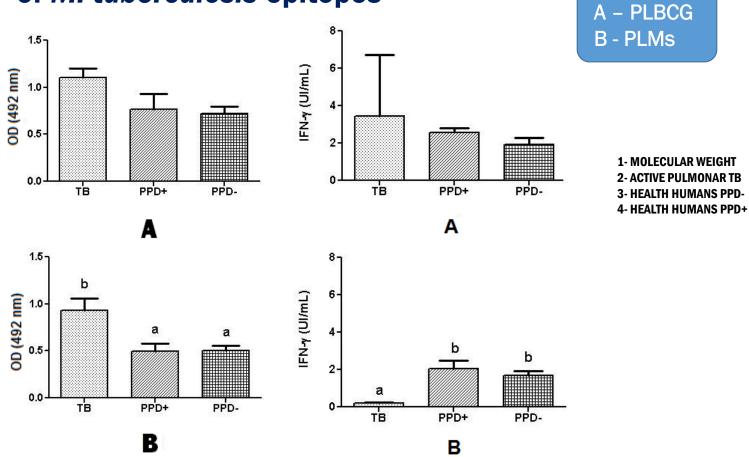
Experimental design

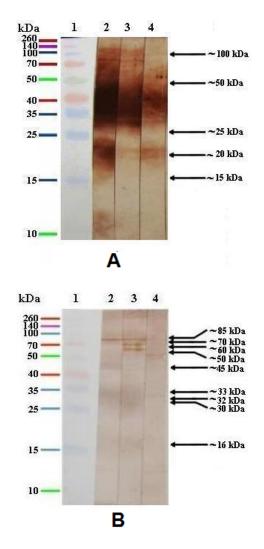

Evaluation of antigenic properties of PLBCG and PLMs against human serum samples and crossreactivity against *M. tuberculosis* antigens

Study of humoral and celular immune response induced by PLBCG and PLMs in Balb/c mice.

Study of the protective capacity of PLBCG and PLMs against TB infection in an experimental murine model of infection using intratracheal challenge

Proteoliposomes characterization




A – PLBCG B - PLMs

200 nm

В

Proteoliposomes showed antigenic properties in human probably due to the presence of *M. tuberculosis* epitopes

Proteoliposomes showed cross-reactivity against *M. tuberculosis* antigens

A – PLBCG B - PLMs

1- PPM

2- PLMs

3- SCWP

5- PLBCG

4- CW

260kDa

140kDa

100kDa

70kDa

50kDa

40kDa

35kDa

25kDa

15kDa

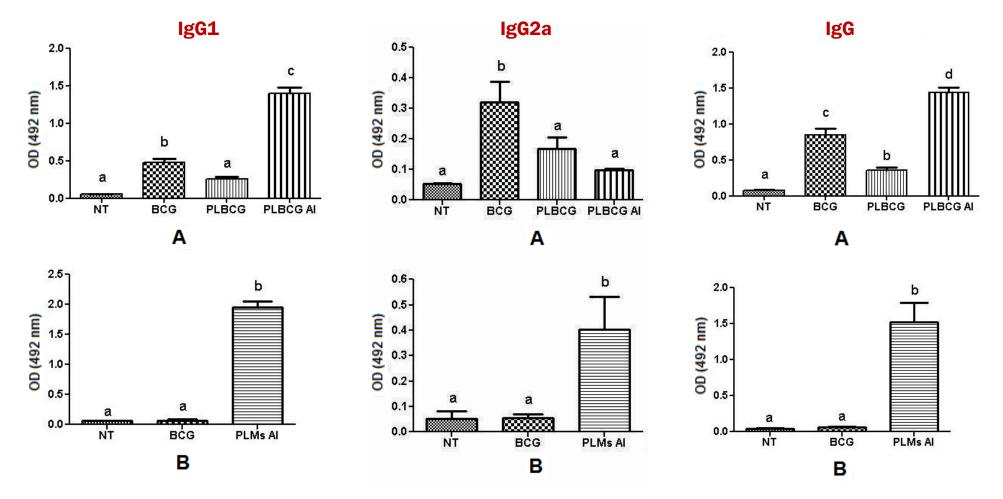
10kDa

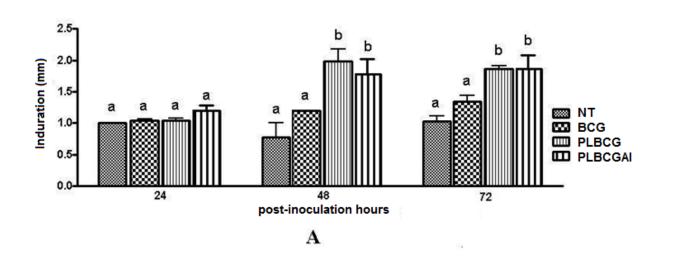
1

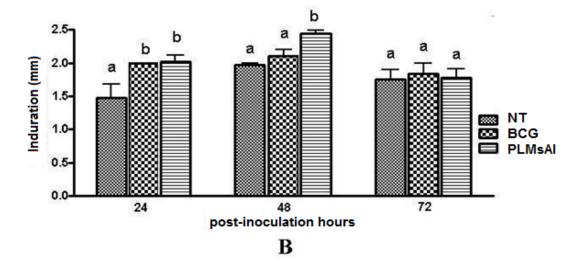
2

3

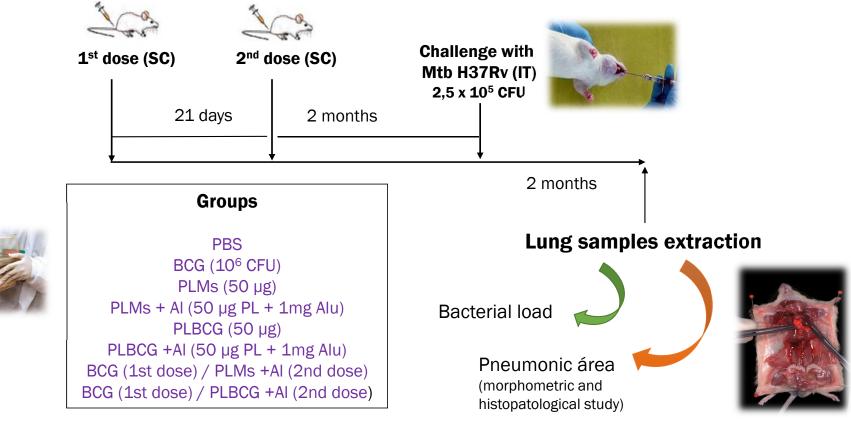
В

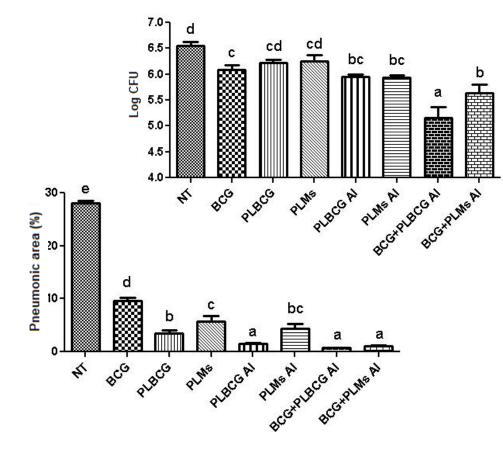

4

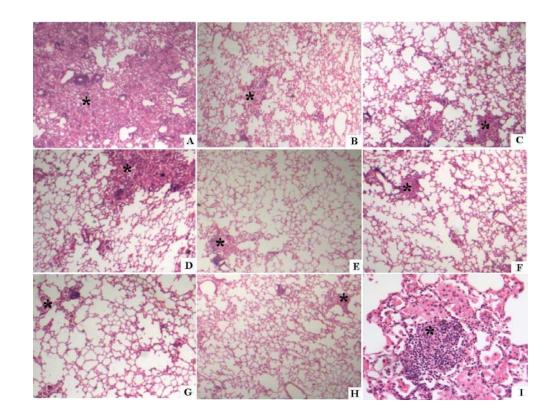

5


Proteoliposome from nonpathogenic bacteria induced humoral immune response in Balb/c mice, mostly combined with alum adjuvant

A – PLBCG B - PLMs




A – PLBCG B - PLMs


Challenge experiment

Experimental model of intratracheal infection with Mtb (Dr. Rogelio Hernandez-Pando, Mex) Hernandez-Pando, et al 1996

Proteoliposomes from BCG and M. smegmatis protected significantly against experimental infection with MtbH37Rv than BCG

A: NT (10 x), asterisk shows extensive area of general pneumonia; B: BCG (10 x), C: PLBCG (10 x); D: PLMs (10 x); E: PLBCG AI (10 x); F: PLMs AI (10 x); G: BCG+PLBCG AI (10 x); H: BCG+PLMs AI, (10 x), asterisk show small pneumonic área; I: BCG+PLBCG AI (20 x); asterisk show a granuloma surrounded by a characteristic alveolar structure

FINAL REMARKS

- ✓ Proteoliposome derivated from *M. bovis* BCG and *M. smegmatis* are protective against TB infection in mice when were used with adjuvant as a prophylactic vaccine candidate in a prime-boost strategy.
- ✓ Both proteoliposomes could be used as a reinforce of BCG vaccination

- ✓ Study of protective efficacy against hypervirulent *M. tuberculosis* strains
- Challenge experiment for study the protective capacity of PLMs and PLBCG in guinea pig model

Thanks to...

Finlay Institute, Cuba

FIN

- Yanely Tirado
- Alina Puig
- Reinier Borrero
- Alicia Aguilar
- Lissete Rodríguez
- Sonsire Fernández
- María A García
- José L Pérez
- María E Sarmiento
- Armando Acosta

University Sains Malaysia, Malaysia

Norazmi Mohd-Nor

National Institute of Medical Sciences and Nutrition, Mexico D.F.

- Dulce Mata
- Jorge Barrios-Payán
- Rogelio Hernández-Pando