Polyamines in Foods: Adverse and Beneficial Effects of Polyamine Intake

Euro Global Summit and Expo on Food & Beverages June 16-18, 2015 Alicante, Spain

Nihal BUYUKUSLU

ISTANB

Department of Nutrition and Dietetics, Istanbul Medipol University, Turkey

nbuyukuslu@medipol.edu.tr

- Putrescine (diamine), spermidine (triamine) and spermine (tetramine) are most abundant polycationic natural amines.
- They are involved in regulation of gene expression, translation, cell proliferation and differentiation, DNA, RNA and protein synthesis in mammal cells.
- They can be supplied by the endogenous synthesis inside the cell or by the intake from exogenous sources.
- The external dietary source provides a larger quantity of polyamines than the endogenous biosynthesis.
- > Dietary polyamines are a part of polyamine body pool. Thus, diet can have a role on regulation of polyamine biosynthesis.
- Food is an important source of dietary polyamines.
- Continuous intake of polyamine-rich food gradually increases blood polyamine levels.
- The benefits of diet polyamine can be changed depending on the specific polyamine and disease; they may be harmful, neutral or beneficial.

Dietary Polyamines in Health and Diseases

<u>A to Z</u>

- > AGING: Dietary polyamines have been reported to be beneficial for aging and their levels decline continuously with age.
- > ANTI-INFLAMMATORY PROPERTIES: Strong anti-inflammotory function of polyamines causes inhibition of chronic inflammation.
- > CELL GROWTH: Polyamines play a role in cell growth and proliferation in human cell.
- > CHEMOTHERAPEUTIC AGENTS: Polyamines can be used as a target for potential chemotherapeutic agents.
- DEMENTING ILLNESSES: Endogenous polyamine levels are altered in dementing illnesses such as Alzheimer disease and Down syndrome
- > DEVELOPMENT OF SMALL INTESTINAL AND COLONIC MUCOSA: Dietary luminal polyamines are important local factors

for growth and the development of small intestinal and colonic mucosa.

- DIABETES: Glycation plays an important role in the genesis of diabetic complications. Spermine and spermidine have been shown to display a significant antiglycation effect at physiological concentration suggesting the role for polyamines in diabetes.
- > HEALING: Polyamines play an important role in the healing after injury under physiological and various pathological conditions.
- INTESTINAL PERMEABILITY: Polyamines play a crucial role in the intestinal permeability which is related to Crohn's disease,
 Ulcerative colitis and Celiac disease.
- ISCHEMIC BRAIN DAMAGE: Polyamines have been implicated in the pathogenesis of ischemic brain damage. Polyamines play an important role in brain development, mature brain function and also in neurodegenerative conditions
- > PAIN CONTROL: Polyamine-deficient diet seems to be effective as a pain relief treatment for both chronic and acute pain.
- > **PANCREATITIS:** Polyamines are also important in diseases such as pancreatitis.
- > SNYDER-ROBINSON SYNDROME: An inherited human disease, Snyder-Robinson syndrome, an X-linked mental-retardation and

developmental disease is caused by an alteration in the SpmS gene that encodes spermine synthase.

> TUMOR DEVELOPMENT: There is a close relation between polyamine catabolism and tumor development. Polyamines were

identified as participating in almost all stages of tumorigenesis.

Conclusions

✓ Epidemiological studies show the close positive or negative correlation between increased polyamine intake and diseases.

✓ Their benefits can be changed depending on the specific polyamine and disease; they may be harmful, neutral or beneficial.

✓ Considering health and wellness benefits, dietary polyamines seem to be important in human health and diseases, therefore daily

dietary intake of polyamines should be carefully evaluated depending on individual requirement.

References

Battaglia V, DeStefano Shield C, Murray-Stewart T, et al. "Polyamine catabolism in carcinogenesis: potential targetsfor chemotherapy and chemoprevention," *Amino Acids*, vol. 46, pp. 511-519, 2014.
Binh PNH, Soda K, and Kawakami M. "Mediterranean diet and polyamine intake: possible contribution of increased polyamine intake to inhibition of age-associated disease," *Nutr Diet Suppl.*, vol. 3, pp. 1-7, 2011.
Buyukuslu N. "Dietary Polyamines and Diseases: Reducing polyamine intake can be beneficial In cancer treatment," *J Nutr.*, vol. 2, pp. 27-38, 2015.
Cipolla BG, Havouis R, and Moulinoux JP. "Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients," *Amino Acids*, vol. 33, pp. 203-212, 2007.
Cipolla BG, Havouis R, and Moulinou JP. "Polyamine reduced diet (PRD) nutrition therapy in hormone refractory prostate cancer patients," *Biomed Pharmacother.*, vol. 64, pp. 363-368, 2010.
Estebe JP, Legay F, Gentili M, et al. "An evaluation of a polyamine-deficient diet for the treatment of inflammatory pain," *Anesth Analg* vol. 102, pp. 1781-1788, 2006.
Kaaberlein M, "Spermidine surprise for a long life," *Nat Cell Biol.*, vol. 11, pp. 1277-1278, 2009.
Kalac P, "Health effects and occurrence of dietary polyamines: A review for the period 2005 mid 2013," *Food Chem.*, vol. 161, pp. 27-39, 2014.
Kalac P, and Krausova P. "A review of dietary polyamines: formation, implications for growth and health and occurrence in foods," *Food Chem.*, vol. 90, pp. 219-230, 2004.
Linsalata M, and F. Russo F. "Nutritional factors and polyamine endabolism in colorectal cancer," *Nutr.*, vol. 24, pp. 382-389, 2008.
Löser C, Eisel A, Harm D et al. "Dietary polyamines are essential luminal growth factors for small intestinal and colonic mucosal growth and development," *Gut* vol. 44, pp. 12-16, 1999.
Seidl R, Beninati S, Cairns N, et al