Pharmacokinetic and clinical study of intra-articular insulin in healthy horses

García-Lacy Fernando^{1*}, Gutiérrez Olvera Lilia², Rodríguez Monterde Alejandro¹,

. Departamento de Medicina, Cirugía y Zootecnia para Équidos. Facultad de Medicina Veterinaria y Zootecnia, UNAM. 2. Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, UNAM. *f_garcialacy@hotmail.com

Background

The horse has approximately 6,000 years of being domesticated, also it has been used by man kind for several athletic activities, from which we have various equine sports today. However, this activities make the horse an athlete, which makes it more prone to excessive loads to the bones, joints and soft tissues with their subsequent injuries, and because of that, equine sports medicine has been developing several combinations of treatments for those conditions in order to maintain their health for sports. Insulin has been used empirically for intra-articular (IA) injection without really knowing both its local (joint) and systemic effects and therefore, its dose. There's scientific evidence that insulin produces mitosis in equine chondrocites in vitro with concentrations lower than 50 ng/ml, also it enhances type II collagen production. The objective of this study was to determine the pharmacokinetic parameters of insulin injected directly into the horse's joint; in order to know its therapeutic dose and also, if the insulin did not represent any adverse reaction both local (joint) in a cellular level, and systemic (blood glucose).

Methods

Figure 4. Withdrawal curve for the 3 different dosis (10, 15 and 20 IU). Every dose has its own AUC, which is dose dependant.

Table 1. Pharmacokinetic parameters for the 15 IU dose of IA insulin.

Parameter	Result	Time (min)
Half life (<i>K_{AE} Half</i>)	0.199927931	11.99
Time of maximum concentration (T_{Conc} Max)	0.288435035	17.30
Area under the curve (AUC)	5.15211030	NA*
Residence Time (<i>Residence_Time</i>) *NA: Not applicable	0.576870070	34.61

Table 2. Pharmacokinetic parameters for the 20 IU dose of IA insulin.

Parameter	Result	Time (min)
Half life (<i>K_{AE} Half</i>)	0.232681513	13.8

Results

Significant changes through time in blood glucose levels for the 3 doses (P<0.0001); no significant difference was found between synovial fluid protein and cell count in both treated and control (saline 0.9%) joints (P>0.05); also, no significant difference was found regarding synovial glucose levels between treated and control joints (P>0.05). HPLC revealed that the pharmacokinetic parameters are dose dependant, however, there was no significant difference when compared with the three different doses (P=0.9851).

Time of maximum concentration (<i>T_{Conc} Max</i>)	0.335688466	19.8
Area under the curve (AUC)	7.37122310	NA*
Residence Time (<i>Residence_Time</i>)	0.671376931	40.2
*NA: Not applicable		

Discussion and conclusions

Non of the 6 horses was lame or presented any clinical sign corresponding to equine metabolic syndrome (EMS) or insulin resistance (IR). Additionally, no evidence of osteoarthritis was found in the radiographic studies.

The changes seen in the synovial fluid analysis were due to needle trauma. No significant increase in protein and nucleated cell count was found. The most predominant cell type was mostly erythrocytes. These results suggest that the insulin used in this study represent no chance for an adverse local reaction to this drug.

Insulin injected into the horses joint has a first order kinetics. All pharmacokinetic parameters are dose dependant. However, insulin has a very short time within the joint, and it is insufficient if the goal of using it IA, is to repair articular cartilage. However, more studies are necessary regarding the duration of insulin in a cellular level in the joint. Since the 10 IU only gave one result at 30 min post injection, there was not possible to determine the pharmacokinetic parameters for that dose.

The recommended dose in this study for a 350-400 kg horse is no more than 20 IU/horse. Since the blood glucose had a significant drop seen at one hour post injection, we suggest that the horse must remain in observation for at least one hour post IA injection of insulin. In this study we used a small amount of horses (n=6), therefore more studies are needed in order to really determine a therapeutic dose of this drug when used IA.

Figures 1-3 Blood glucose. 1) 10 IU dose; 2) 15 IU dose; 3) 20 IU dose. All three doses showed a significant drop of glucose levels, that was restored within the 6-8 hours por IA injection of insulin. The 20 IU seemed to have more variation of parameters when compared with the 10 and 15 IU graph.

Insulin shares the same receptor as IGF-1, so its intracellular effect for mitosis is by the same pathway (MAP-K), it also produces type II collagen, all of this in less proportion than IGF-1 itself.

This is the first *in vivo* study for the intra articular use of insulin, so it can be used as a base for subsequent studies regarding this drug.

References

- Henson FMD, Davenport C, Butler L, et al. Effects of insulin and insulin-like growth factors I and II on the growth of equine fetal and neonatal chondrocytes. Equine Vet J 1997;29(6):441-447.
- Davenport C, Boston R, Richardson DW. Effects of insulin-like growth factor-II on the mitogenic and metabolic 2. activities of equine articular cartilage with and without interleukin 1-β. Am J Vet Res 2004;65(2):228-244.
- Muir W, Woolf CJ. Mechanisms of pain and their therapeutic implications. J A, Vet Med Assoc 2001;219:1346-3. 1356.
- Frank N. Equine metabolic syndrome. Vet Clin Equine 2011;27:73-92. 4.
- Carter RA, Geor RJ, Burton SW. Apparent adiposity assessed by standarised scoring systems and morphometric measurements in horses and ponies. Vet J 2009;179:204.
- Hafiz MJ, et al. A simple and sensitive method for the determination of insulin in rat plasma and its application in 6. pharmacokinetic study. Inter J Pharmacy and Pharmaceutical Sci. 2013;(5)2:133-137.