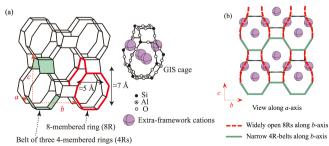


Optical properties of guest Na- and Rb-atoms in quasi-2D $M_{7.8}$ Al_{7.8}Si_{8.2}O_{32.0} (M = Na, Rb) from the perspective of polarons in a deformable lattice

Results

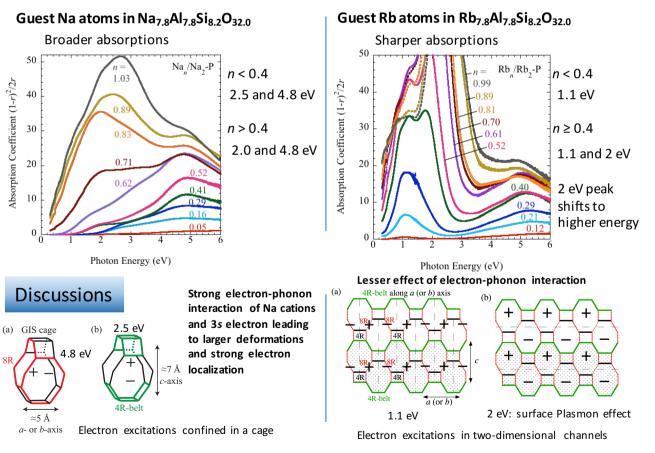
Gayan Prasad Hettiarachchi

Introduction


Electron-phonon interaction plays an important role in strongly-correlated electron systems. Optical and related electronic properties can be fine-tuned by adjusting the deformation potential felt by electrons in a system, and remains a less explored avenue.

Aim

Explore the possibility to fine-tune optical excitations of electrons making use of a deformable lattice that leads to local lattice distortions and symmetrybreaking due to electron-phonon interactions.


Materials and Methods

A quasi-two-dimensional framework ($AI_{7.8}Si_{8.2}O_{32.0}$) is used to confine electrons in nearly-two-dimensional space. The framework contains a deformable lattice made-up of displaceable cations ($M_{7.8}$).

Optical properties are investigated making use of diffuse reflectance of powder particles and Kubelka-Munk transformations to obtain optical absorption. Department of Physics, Osaka University, Japan Institute for NanoScience Design, Osaka University, Japan

 $M_{7.8}$ Al_{7.8}Si_{8.2}O_{32.0}: Four cages, Na₂-P: Abbreviation for one-cage, n: Guest atoms per cage

Electron-phonon interaction (polarons) strongly modifies the optical properties Further experimental and theoretical investigations of the polaron effect are needed