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INTRODUCTION
Small interfering RNA (siRNA) molecules trigger gene silencing by

the endogenous RNA interference pathway (Elbashir et al., 2001).

While siRNA can be used to silence genes implicated in disease, a

suitable carrier is essential for its introduction into the cell.

Cationic liposomes are a class of non-viral vectors that have

shown potential as siRNA carriers. However, unfavourable

liposome-serum interactions often limit their efficacy. In order to

address this concern, liposome-stabilising agents, cholesterol

(Chol) and polyethylene glycol (PEG), were incorporated in the

formulation of new liposome-siRNA systems. We report here on

the characterisation and cytotoxicity testing of these complexes

as an initial step in evaluating their potential as nanomedicines.

METHODS
Liposome suspensions (8 μmol/ml) were prepared by thin film

hydration of N,N-dimethylaminopropylamidosuccinylcholesteryl-

formylhydrazide (MS09) and Chol in equimolar amounts, with or

without distearoylphosphatidylethanolamine poly(ethylene

glycol)2000 at 2 mol %. Liposomes which contained

dioleoylphosphatidylethanolamine (DOPE) were made for

comparative purposes. Lipoplexes were assembled by incubating

liposomes and non-targeting siRNA (30 mins, 25 ˚C). Lipoplexes

were described based on the amount of MS09 relative to siRNA

on a weight basis. Liposome-siRNA interactions were studied in

fluorescence quenching (Fig.1), band shift (Fig.2) and nuclease

digestion (Fig.3) assays. Lipoplexes were analysed by Zeta

potential Nanoparticle Tracking Analysis (Z-NTA) and cryogenic

transmission electron microscopy (Cryo-TEM) (Fig.4). Lipoplexes

were evaluated for cytotoxicity, by the MTT and alamarBlue®

assays, in human cell lines (Fig.5). Data is presented as the mean

± SD (n = 3), and was analysed with the unpaired Student’s t-test.
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Figure 5: Effect of lipoplexes on cell growth as assessed by MTT (a,b) and alamarBlue®(c,d) assays. Results obtained with HEK293 and MCF-7 cells are given as examples. Cells

(4 ×104 cells/well) were exposed to final siRNA and lipid concentrations of 57 nM and 29-79 μM, respectively, for 24 hrs in the presence of serum. *P < 0.05, **P < 0.01 vs.

untreated group; �P < 0.05, ��P < 0.01, ���P < 0.001 vs. LipofectamineTM 3000 (LF3K). The observation that cell numbers may be overestimated by the MTT assay has

been documented elsewhere (Hamid et al., 2004).
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Figure 1: Fluorescence quenching assay. Incubation

mixtures contained HEPES-buffered saline (200 μl),

ethidium bromide (0.4 μg), siRNA (1 μg) and liposome

(introduced stepwise, in 1 μl aliquots). An arrow shows

the point of inflection in each case. ###P < 0.001 vs. non-

pegylated counterpart, ●●●P < 0.001 vs. DOPE-containing

counterpart at point of inflection.

Figure 2: Densitometric analysis of band shift assays.

Lipoplexes, assembled from siRNA (0.3 μg) and varying

amounts of liposome, were subjected to agarose gel

electrophoresis. Arrows show points of maximum siRNA

binding. ###P < 0.001 vs. non-pegylated counterpart,
●●●P < 0.001 vs. DOPE-containing counterpart at point of

maximum binding.

Figure 3: siRNA-protecting capacity of liposomes.

Lipoplexes were incubated (4hrs, 37 ˚C) with 10 % (v/v)

serum. After detergent treatment, samples were

subjected to agarose gel electrophoresis. Intact siRNA was

quantified by densitometry. ###P < 0.001 vs. non-pegylated

counterpart, ●●P < 0.01, ●●●P < 0.001 vs. DOPE-containing

counterpart.

CONCLUSION
MS09/Chol and MS09/Chol/PEG liposomes associated with siRNA

to form lipoplexes within which siRNA was protected. Lipoplexes

were of suitable size for cellular uptake. The alamarBlue® assay

showed that Chol-based lipoplexes were best tolerated at

MS09:siRNA (w/w) ratios of 12:1 – 24:1 and, in some instances,

were less toxic than those containing DOPE. Hence, the novel

lipoplexes may prove useful as nanomedicines. Future work may

include their association with oncogene-specific siRNA sequences

and evaluation of anti-cancer effects.

Figure 4: Representative electron micrographs of liposomal vesicles and lipoplexes of MS09/Chol (a) and MS09/Chol/PEG (b) formulations. Size and ζ potential of

samples are recorded below each image. In each case modal size and ζ potential values are given. #P < 0.05, ##P < 0.01, ###P < 0.001 vs. MS09/Chol.
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