

Function and structure of a novel anti-diabetes agent from Ganoderma Lucidum

Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China

INTRODUCTION

Morris F White. Insulin signaling in health and disease Science, 2003, 302 (5651):1710-1711

 Inhibition of protein tyrosine phosphatase 1B (PTP1B) activity has been considered as a promising therapy approach to treat type 2 diabetes.

• Protein tyrosine phosphatase 1B (PTP1B) have been implicated in the regulation of insulin signal transduction process

• PTP1B dephosphorylate the insulin receptor as well as the substrate proteins, controlling the insulin signaling pathway

• Overactivation of PTP1B inhibits the insulin receptor signaling cascade. Therefore, PTP1B is an insulinsensitive drug target for anti-diabetes.

OBJECTIVE

In this work, a novel PTP1B activity inhibitor, named FYGL (Fudan-Yueyang-G. lucidum), was screened from the fruiting bodies of Ganoderma lucidum. The efficient PTP1B inhibitory potency, plasma glucose level in vivo, toxicity of FYGL, and structure of FYGL were studied.

RESULTS

Bao-Song Teng, Ping Zhou,* et al. J. Agric. Food Chem. 2011, 59(12), 6492-6500.

Ping Zhou

Normal Control 75mg/kg 250mg/kg 450mg/kg 200mg/kg FYGL FYGL FYGL Mefformin

n = 8, *p < 0.05 vs. control, **p < 0.01 vs. control.

• HbAlc is considered a "golden index" indicating the plasma glucose level. After 8 weeks, HbA1c level was significantly decreased dose-dependently for the mice treated by FYGL and metformin.

Deng Pan, Ping Zhou,* et al. *PLoS One*, 2013, 8(7), e68332.

metformin 200mg/kg

 6.4 ± 0.3 **

PTP1B activity in skeletal muscle

Compared with control group, PTP1B expression and activity were inhibited dose-dependently in FYGL group, also indicating that the target of FYGL is PTP1B in vivo. Chendong Wang, Ping Zhou,* et al. Brit J Nutr, 2012, 108, 2014-2025.

be represent by the following groups: $\rightarrow 2.4$)- α -L-Rhap-(1-

R→2)-α-D-Glcp-(3-

 β -D-Galp-(1 \rightarrow 3)-Ga

 $\rightarrow 2$)- α -L-Rhap-(1 $\rightarrow 2$)- α

protein-T

RESULTS

Structure characteristic of FYGL

• Figure is β -elimination reaction probed by UV, which indicates that protein is bound with saccharide by O-glycosidic linkage.

• Table is amino acid contents before and after β -elimination reaction, which shows that after β elimination reaction, both Thr and Ser contents were decreased, while Ala increased, indicating that protein bind covalently with saccharide by Thr and Ser residues.

• NMR analysis suggest *FYGL* being a heteropolysaccharide with α and β linkages, the peaks within 170 - 175 ppm in ¹³C NMR indicates protein present. The backbone is hyperbranced polysaccharide and proteins are grafted. (Deng Pan, Ping Zhou, * et al. Carbohydrate Polymer, 2015, 117, 106–114.)

CONCLUSION

- FYGL, screened from G. lucidum, is an efficient PTP1B inhibitor in vivo
- FYGL can decrease the plasma glucose level through inhibiting the PTP1B expression and activity, consequently, regulating the tyrosine phosphorylation level of the IR β-subunit.
- 3. FYGL contain hyperbranched proteoglycan, which may play special roles for its bioactivities of PTP1B inhibition and antihyperglycemic potency.

ACKNOWLEDGEMENT and CONTACT

This work was supported by NSFC (Nos. 21074025, 21374022). Contact: Dr. Ping Zhou, pingzhou@fudan.edu.cn

α-D-Glcp

 \rightarrow 6)-B-D-Galp-1 \rightarrow , Araf-(1 \rightarrow and \rightarrow 3.6)-B-D-Galp-(1

R→2)-α-D-Glci