FAST TRACK ORTHODONTICS

DR JANITA SHAH (B.D.S)

INTRODUCTION

The orthodontic patient's number one concern has always been "how long will I have to wear the braces for?" Recent developments in the field of orthodontics has made it possible to increase the speed and efficiency of orthodontic tooth movement such that there is a dramatic decrease in treatment time. Various pharmaceutical, surgical, mechanical/physical simulation methods have been utilized in an attempt to enhance the periodontium's response to orthodontic forces, and subsequently accelerate tooth movement.

Exogenous M-CSF (Brooks et al, 2011) Vitamin D3 (Collins and Sinclair, 1988) Prostaglandin E2 (Yamasaki et al, 1984) activity on the pressure side Osteocalcin (Kobayshashi et al, 1998) Positive effects on bone metabolism Thyroxine

BIOLOGICAL APPROACH

Positive effects on osetoclastic numbers and

As of now, no biologically active molecule exists that can safely accelerate tooth movement without causing side effects

SURGICALLY ASSISTED ORTHODONTICS

Corticotomy facilitated orthodontics enables treatment to be completed in $\frac{1}{3}$ to $\frac{1}{4}$ the time required for traditional orthodontics (Wilcko et al, 2009)

Rationale

Physical injury evokes a regional acceleratory phenomenon which results in temporary osteopenia responsible for the rapid tooth movement. (Dibart et al, 2010)

Corticotomy assisted orthodontics - Periodontally accelerated osteogenic orthodontics

- Involves the decortication of bone adjacent to malposed teeth (without entering cancellous bone) using slow speed. burs and irrigation, and particulate grafting (if required) in areas that have undergone corticotomy.
- Heavy orthodontic forces can be applied 1 week before to 2 weeks after surgery.
- Can reduce orthodontic treatment time by 75%, as well as increase the alveolar process width.

Indications and Clinical Applications

- 1. Resolve crowding and shorten treatment
- time
- 2. Accelerate canine retraction after premolar extraction
- 3. Enhance post-orthodontic stability 4. Facilitate eruption of impacted teeth
- 5 Facilitate slow orthodontic expansion

Flapless corticotomy - Corticision Involves the use of a reinforced scalpel and mallet to go through the gingiva and

Laser assisted flapless corticotomy

Laser assisted flapless corticotomy can enhance orthodontic tooth movement without jeopardizing the healing process of the soft tissue and the hard tissue.

> The effects of laser assisted flapless corticotomy on the rate of

(Tyrovola and Spyropoulos, 2001) Long term/High dose Corticosteroid Therapy (Gonzales et al, 2009) Local RANKL gene transfer (Kanzaki et al, 2006)		Accelerates ortho Current orthodor methods of incre of these molecul	odontic tooth movement antic research aims to develop easing the tissue concentration les	Systemic delivery results in unwanted systemic adverse effects Local delivery requires repeated painful injections of the biologically active molecule			 6. Molar intrusion and Open Bite correction 7. Manipulation of Anchorage Complications and Adverse Effects Invasive Periodontal defects, slight interdental 	 cortical bone without raising a flap bucally and lingually. Drawbacks: Not able to graft soft/ hard tissues during the procedure to correct inadequacies 	
	ADVERSE EFFECTS	PROSTAGLAN Root resorption concentration Hyperalgesia	NDINS on with higher ns on local injection	higher injection NUTAMIN D3 Increased serum levels of LDH and enzymes when injected in the periodontal ligament		CORTICOSTEROIDS Osteoporosis Tooth movement is less stable Osteoporosis Tooth movement is less stable	 bone loss and loss of attached gingiva Some post-operative swelling and pain can be expected for several days Intensive corticotomies may result in subcutaneous hematomas of the face & neck 	 and reinforce periodontium Repeated malleting can result in dizziness/ benign paroxysmal positional vertigo post-surgery Patients find the procedure quite aggressive. 	
	PHYSICAL/MECHANICAL STIMULATION							Not suitable for patients with active periodontal disease/ gingival recession	

1.653 0.936 Control Laser assisted corticomy

Mani Alikhani (2013)

Micro osteo perforations

- Micro-osteoperforation is an effective, comfortable, and safe procedure to accelerate tooth movement and significantly reduce the duration of orthodontic treatment.
- Not as invasive as corticotomy with flap elevations or even microincisions.

Piezocision (Minimally invasive procedure) and ligament distraction technique

- Flapless corticotomy using bucally placed micro incisions and the use of a piezoelectric knife. Selective tunneling is also possible for soft/hard tissue grafting, if required, making it quite versatile.
- It demonstrates similar clinical outcome when compared to classic decortication

(alveocentesis)

(DEVICE ASSISTED)

Cyclic forces/vibrations

The use of resonance vibration to accelerate orthodontic tooth movement in humans (Kau et al)

a 28 MAXILLA MANDIBLE Patients who used the device 20 mins/day at vibration rate of 20-30Hz Conventional wisdom regarding the normal rate of orthodontic tooth movement

Device, FDA approved since 2009

Low Level Laser Therapy (LLLT) - Photobiomodulation

The results of human studies conducted to study effect of Low Level Laser Therapy on orthodontic tooth movement

Light Accelerated Orthodontics

FDA approved device which uses low intensity near infra-red light (850 nm continuous wavelength) technology to accelerate tooth movement by a factor of 2.29 times (Kau et al, 2013), thereby reducing treatment time.

Limitations of the study Bulkiness of the devices and source of electricity – problematic to carry out the study in humans

> **Potential solution** The development of biocatalytical fuel cells

mineralized tissues, thus sparing soft tissues and their blood supply.

Monocortical tooth dislocation

• Uses piezosurgery, instead of burs, after

conducive to rapid tooth movement.

flap elevation, to create an environment

• The piezoelectric knife has a micrometric

precise osteotomies without causing any

and selective cut, allowing for safe and

osteonecrosis. It works only on

Wilcko brothers

(late 1990s)

- The average treatment time with the MTDLD technique in the mandible and maxilla can be reduced by upto 60% and 70%, respectively, when compared to traditional orthodontics, without causing any periodontal defects. (Vercelotti and Podesta, 2007)
- approach but has the added advantages of being quick, minimally invasive, and less traumatic to the patient.
- It takes typically 1 hour to complete both arches as compared to 3 to 4 hours with earlier methods.
- The effect of piezocision can extend to 1.5 teeth from each side of the surgical site, therefore decorticating every other tooth is a viable option.
- A ready-to-use sterile disposable device is used to place 2-3 micro perforations placed between each tooth in the cortical bone through the gingival tissue.
- This procedure can significantly increase the rate of orthodontic tooth movement by up to 2.3-fold, without causing any significant pain or discomfort during or after the procedure, or any other complications.

CONCLUSION

The administration of certain exogenous biological molecules during animal experiments and clinical trials, to accelerate orthodontic tooth movement, has shown promising results. However, at present, there is no exogenous biological molecule that can be safely administered without causing any adverse effects on systemic or local application, thereby limiting the scope of future research via human trials, until a safer alternative can be developed.

The low level laser therapy, as one of the mechanical methods to increase the rate of orthodontic tooth movement, has shown the most favorable outcome. Although, further investigations are warranted in order to determine the optimum energy level and duration of therapy at which higher success rates can be achieved.

Corticotomy assisted orthodontics still remains the most predictable method of speeding up orthodontic tooth movement, however, due to its aggressiveness, its clinical application has been limited. Developments and modifications to this approach, has given rise to less invasive techniques, such as the recent introduction of piezocision, which clinically, has resulted in better periodontal tissue response and esthetics.

Further clinical research is necessary in order to safely endorse a particular method of accelerating orthodontic tooth movement. However, the way has been paved forward for this new frontier in orthodontics, which will not only reduce the duration of treatment, but will also decrease the predisposition to dental caries, gingival recession and root resorption during orthodontic treatment, which are some of the disadvantages posed by current treatment times.

Bibliography

Schematic diagram of a microfabricated fuel cell (enzyme battery) placed on the gingiva near alveolar bone. Using an organic fuel and enzymes (biocatalyst), it generates electricity to

accelerate orthodontic tooth movement:

Issues with:

Which results in a battery with:

1. Dibart et al. Compend Contin Educ Dent. 2009;30(6):342-4, 346, 348-50.

2. Agarwal et al. Journal of Pharmacy and Bioallied Sciences. 2012;4(6):299.

3. Hassan A. TODENTJ. 2010;4(1):159-164.

4. Kau et al. Progress in Orthodontics. 2013;14(1):30, 42

5. Davidovitch et al. Medical Hypotheses. 2009;73(3):340-341.

6. Seifi et al. Journal of Lasers in Medical Sciences. 2012;3(1):20-25.