
Exploration of the electric and magnetic dipole transition mechanism for Nd³⁺ doped Yttrium aluminum borate

Introduction

In recent years, the borates have attracted considerable attention owing to their excellent optical and chemical behavior in laser and lighting technologies. Among various borates, the most widely used borate for host lattice is probably the yttrium aluminum borate (YAB). When YAB is doped with the rare earth ion called neodymium (Nd³⁺), it becomes a promising system for generating near-infrared lasers^[1] and for self-frequency-doubling lasers because of its high nonlinear optical coefficient and huge stimulated emission cross section.^[2]

The crystal structure of $YAI_3(BO_3)_4$ is trigonal with the space group R32. Yttrium cations occupy sites in trigonal prisms while aluminum and boron atoms are located in sites with octahedrally coordinated oxygen, respectively. It has been confirmed by previous study that the rare-earth ions will substitute the position of Y³⁺ in the crystal lattice.^[3]

Figure 1 gives a visual micro-structure of Nd³⁺ doped YAB.

Research Methodology

The atomic energy levels of Nd³⁺ ions in YAB are calculated using our developed crystal-field (CF) theory method.

The parametric Hamiltonian for a 4f³ configuration ion can be expressed as:^[4-5]

$$H_{f} = E_{AVE} + \sum_{k=2,4,6} F^{k} f_{k} + \zeta_{4f} \times \sum_{i} \vec{l}_{i} \cdot \vec{s}_{i} + \alpha L(L+1) + \beta G(G_{2}) + \gamma G(R_{7})$$

$$+ \sum_{k=2,k\neq5}^{8} t_{k} T^{k} + \sum_{j=0,2,4} M^{j} m_{j} + \sum_{k=2,4,6} P^{k} p_{k}$$
(1)

The CF interaction operator H_{CF} will be introduced when the RE³⁺ ion is doped into the crystal. For the Wybourne normalization, the crystal field Hamiltonian for the D_3 symmetry can be written as:^[6]

 $H_{CF} = B_2^0 C_2^0 + B_4^0 C_4^0 + B_6^0 C_6^0 + B_4^3 (C_4^{-3} - C_4^3) + B_6^3 (C_6^{-3} - C_6^3) + B_6^6 (C_6^{-6} + C_6^6)$ (2)

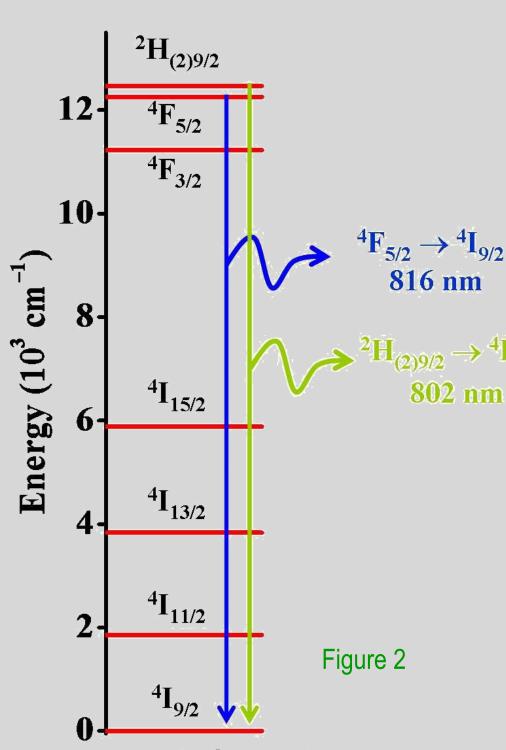
where $C_a^{\ k}$ are the normalized spherical-tensor operators. The $B_a^{\ k}$, also known as the crystal field parameters (CFPs), are closely related to the crystal environment and can be determined by the leastsquares fit to the observed energy levels or estimated by the superposition model through the use of some crystal field invariants.^[7]

POSTER TEMPLATE BY: www.PosterPresentations.com

To fully explore the likely transition mechanisms for this system, we carry out a systematic calculations of the transition intensities and radiative features within the 4f³ configuration of Nd³⁺ by using a complete free-ion Hamiltonian for the f-shell in conjunction with the crystalfield theory and the Judd-Ofelt theory.

We first focused on the atomic energy calculation of Nd³⁺ ions by using the fitted values of free ion and crystal-field parameters reported by Cascales et. al.^[8] Noticeably, our result of the energy levels showed reasonable agreements with the previous studies, thus providing significant support for the reliability of our calculation method. The Stark levels as well as the corresponding atomic energy levels are illustrated quantitatively in Figure 2.

Then, the electric dipole (ED) induced transitions for excited states of Nd³⁺ ion in YAB are calculated. It can be clearly seen from Table 1 that the ${}^{4}F_{5/2} \rightarrow {}^{4}I_{9/2}$ and ${}^{2}H_{(2)9/2} \rightarrow {}^{4}I_{9/2}$ transitions are good candidates for laser action at the near-infrared region.


In addition, the magnetic dipole (MD) transitions are also shown with detailed values, providing a large number of strong absorption lines and spontaneous emissions for experimental use.

able 1. Calcula	ited wavelengths (λ), ED (A _{ED}) and MD	(A _{MD}) radiative de	ecay rates, branchi	ing ratios (<i>β</i>) and ra	diative lifetimes (<i>t</i>) for spontaneous	emission transition	is between J-mult	iplets in Nd:YAB
Transition		λ (nm)	A _{ED} (s-1)		A _{MD} (s-1)	β		τ (μs)		
4I _{11/2}	⁴ I _{9/2}	5391	7.8		1.4	1		106835		
4 _{13/2}	⁴ I _{9/2}	2611	21.1		0	0.66		31256		
	4 _{11/2}	5063	9.0		2.0	0.34				
4 _{15/2}	⁴ I _{9/2}	1700	6.3		0	0.17		26837		
	⁴ I _{11/2}	2482	19.6		0	0.53				
	⁴ _{13/2}	4870	10.0		1.5	0.30				
⁴ F _{3/2}	⁴ I _{9/2}	891	1664.4	1637 ^[1]	0	0.49	0.49 ^[1]	298	302 ^[1]	53 ^[1]
	⁴ I _{11/2}	1067	1441.3	1430 ^[1]	0	0.43	0.43 ^[1]			
	⁴ I _{13/2}	1352	235.1	235 ^[1]	0	0.07	0.07 ^[1]			
	⁴ _{15/2}	1872	11.5	12 ^[1]	0	0.003	0.005 ^[1]			
4 F _{5/2}	⁴ I _{9/2}	816	2627.1		0	0.63		241		
	4 _{11/2}	961	642.5		0	0.16				
	4 _{13/2}	1187	763.0		0	0.18				
	⁴ I _{15/2}	1570	109.1		0	0.03				
² H _{(2)9/2}	⁴ I _{9/2}	802	296.7		6.1	0.50		1653		
• •(2)9/2	4 _{11/2}	942	40.1		3.7	0.07				
	4 _{13/2}	1158	122.9		0	0.20				
	4 _{15/2}	1519	135.2		0	0.23				
⁴ F _{7/2}	⁴ I _{9/2}	756	1573.8		0	0.39		246		
	⁴ I _{11/2}	879	1405.5		0	0.34				
	⁴ I _{13/2}	1064	608.6		0	0.15				
	⁴ I _{15/2}	1361	475.8		0	0.12				

Meng Ju* and Yau-yuen Yeung

Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong China *Visitor from Sichuan University, Chengdu, China

Results and discussion

Nd³⁺ in YAB

Conclusion

In summary, we performed a systematic exploration of the electric and magnetic dipole transitions between the excited states of Nd³⁺ doped YAB crystal. Based on the fitted values of free ion and crystal-field parameters reported by previous study, the wavelengths, radiative decay rates, branching ratios and radiative lifetimes for spontaneous emission transitions between J-multiplets in Nd:YAB are reasonably predicted and compared with some finding available in the literature. More importantly, our theoretical results indicate that the ${}^{4}F_{5/2} \rightarrow {}^{4}I_{9/2}$ and ${}^{2}H_{(2)9/2} \rightarrow {}^{4}I_{9/2}$ transitions are good candidates for laser action at the near-infrared region.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11274235, 11304167 and 11574220), the 973 Program of China (2014CB660804), the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) and the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 15HASTIT020). Funding support from the Committee on Research and Development and Dean's Research Grants of the Faculty of Liberal Arts and Social Sciences, EdUHK is gratefully acknowledged.

References

- [1]. Santos, C. N.; Mohr, D.; Silva, W. F., J. Appl. Phys., 2009, 106, 023512.
- [2]. Chen, X. Y.; Luo, Z. D., J. Phys.: Condens Matter, 1998, 10, 5147-5160.
- [3]. Jia, G. H.; Tu, C. Y.; Li, J. F.; You, Z. Y.; Zhu, Z. J.; Wu, B. C., Inorg. Chem., 2006, 45, 9326-9331.
- [4]. Dieke, G. H., Spectra and Energy Levels of Rare Earth lons in Crystal. (New York: Wiley) 1968.
- [5]. Henderson, B.; Imbusch, G. F., Optical Spectroscopy of Inorganic Solids, (Oxford: Clarendon Press) 1989.
- [6]. Rajnak, K.; Wybourne, B. G., Phys. Rev., 1963, 132, 280-290.
- [7]. Yeung, Y. Y.; Newman, D. J., J. Chem. Phys., 1986, 84, 4470-4473.
- [8]. Cascales, C.; Zaldo, C.; Caldino, U.; Sole, J. G.; Luo, Z. D., J. Phys.: Condens Matter, 2001, 13, 8071-8085.

Contact information

Department of Science and Environmental Studies, The Education University of Hong Kong 10 Lo Ping Road, Tai Po, NT, Hong Kong, China

- T: 852-29487650
- F: 852-29487676
- E-mail: yyyeung@eduhk.hk

in Nd:YAB.