# BACKGROUND

Acinetobacter baumannii is a remarkable hospital pathogen, notably due to the dissemination of highly multidrug resistant isolates and the treatment options for infections caused by multi-drug resistant (MDR) A. baumannii strains constitute a strong challenge. The virulence factors of this organism such as biofilm formation, bacterial adherence, bacterial invasion and efflux pumps help the bacterium to survive in adverse environmental conditions and facilitate the development of an infection. Antiseptics are frequently used for the management of MDR pathogens in hospitals and their consistent use in hospitals has elevated concerns about its resistance. OBJECTIVES

The aim of this study was to determine the effect of subminimum four isolates were amikacin resistant and inhibitory concentrations (sub-MICs) of selected antimicrobial agents imipenem sensitive (ARIS). (Amikacin (AMK), imipenem (IMP), benzalkonium chloride (BZC), and Figure 1: Pattern of cross resistance between carbapenems (Imipenem) and aminoglycosides Figure 4: Effect of sub-MIC of bioactive (Amikacin) among A. baumannii isolates. chlorhexidine (CLX)) and natural product (garlic extract) on biofilm The obtained MIC values of the bioactive compounds were quite variable and Based on the MICs obtained the sub-MICs were calculated where the 3/4 MIC was considered as sub-MIC. formation, bacterial adherence and invasion and the emergence of Table 2 Sub-MICs values obtained for the selected isolates against the bioactive compounds. resistance among A. baumannii clinical isolates.

## MATERIALS AND METHODS

Susceptibility profiles of 50 non-repetitive A. baumannii isolated from admitted patients in two tertiary care hospitals in Cairo, Egypt to eight different antibiotics were investigated. MIC of various antibiotics, antiseptics and garlic were measured by the broth microdilution method. Quantification of biofilm formation after subjecting the isolates to the sub-MIC of the bioactive compounds was carried out using a microtiter plate assay. The ability of test compounds at their sub-MIC to affect the bacterial adherence and invasion was investigated using Type II pneumocyte cell line A549 derived from a human lung carcinoma and the bacterial cells count was determined in each well using flow cytometer. Screening for the presence of antiseptic resistant gene qacA/B was done using PCR.

# Effect of Subminimum inhibitory concentrations of different bioactive compounds on biofilm formation and virulence factors of clinical isolates of Acinetobacter baumannii

Mona H. Mahmoud, Magdy A. Amin, Mai M. Zafer, Aly M. Fahmy and Rania I. Shebl

| ble 1: Antibiotic resistance profiles of <i>A. baumannii</i> isolates obtained from clinical samples. |               |                                           |                            |  |  |  |
|-------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------|----------------------------|--|--|--|
| Antibiotic                                                                                            | Sensitive (%) | Intermediate (%)                          | Resistant (%)              |  |  |  |
| Cefotaxime                                                                                            | 1 (2%)        |                                           | 49 (98%)                   |  |  |  |
| Meropenem                                                                                             | 6 (12%)       |                                           | 44 (88%)                   |  |  |  |
| Doxycyclin                                                                                            | 6 (12%)       |                                           | 44 (88%)                   |  |  |  |
| Imipenem                                                                                              | 7 (14%)       |                                           | 43 (86%)                   |  |  |  |
| Levofloxacin                                                                                          | 4 (8%)        | 3 (3%)                                    | 43 (86%)                   |  |  |  |
| Gentamicin                                                                                            | 2 (4%)        | 6 (12%)                                   | 42 (84%)                   |  |  |  |
| Trimsulfamethoxazole                                                                                  | 3 (6%)        |                                           | 37 (74%)                   |  |  |  |
| Amikacin                                                                                              | 10 (20%)      | 4 (8%)                                    | 36 (72%)                   |  |  |  |
|                                                                                                       |               | Sensitive to both Abs Sensitive to one Ab | only Resistant to both Abs |  |  |  |

Ten isolates were found to have variation in their susceptibility toward both Amikacin and Imipenem where six isolates were amikacin sensitive and imipenem resistant (ASIR) while

| Isolate no. | Gar (µg/ml) | CLX (µg/ml) | AMk (µg/ml) | IMP (µg/ml) | BZC (%w/v) |
|-------------|-------------|-------------|-------------|-------------|------------|
| 304         | 586         | 7.32        | 3.66        | 29.32       | 0.59       |
| 307         | 2344        | 3.66        | 234.38      | 0.92        | 0.59       |
| 310         | 2344        | 3.66        | 234.38      | 0.92        | 0.59       |
| 311         | 1172        | 7.32        | 7.32        | 29.32       | 0.59       |
| 315         | 293         | 3.66        | 7.32        | 14.65       | 0.59       |
| 316         | 586         | 29.30       | 7.32        | 29.32       | 0.59       |
| 317         | 1172        | 14.65       | 3.66        | 58.59       | 2.34       |
| 318         | 2344        | 29.30       | 3.66        | 58.59       | 2.34       |
| 319         | 586         | 14.65       | 7.32        | 58.59       | 2.34       |
| 340         | 586         | 29.30       | 29.30       | 58.59       | 2.34       |
| CONCLUSI    | ON          |             |             |             |            |

Sub-MIC of antibiotics and antiseptics can lead to emergence of resistance. Therefore, careful evaluation of sub-MIC effects on bacterial physiology is needed prior to therapeutic use of sub-MICs. Antiseptics are important components of infection control and continuous monitoring of antiseptics use in the hospital is cautioned.

| R | FS | ΤS |
|---|----|----|
|   |    |    |





### References

Front Microbiol 6: 618.

Fernandez-Cuenca, F., M. Tomas, et al. (2015). "Reduced susceptibility to biocides in Acinetobacter baumannii: association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps." J Antimicrob Chemother 70(12): 3222-3229. Letourneau, J., C. Levesque, et al. (2011). "In vitro assay of bacterial adhesion onto mammalian epithelial cells." <u>J Vis Exp(51)</u>. Tiwari, V., R. Roy, et al. (2015). "Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens."

