

Development of optimal algorithm for determination of Escherichia coli and Klebsiella pneumoniae with phenotypic ESBL_A and ESBL_M based method

Ülle Parm (MD; PhD)^{1,2}, Sirje Laks³, Anna-Liisa Tamm (PhD)², Svetlana Rudenko (MD)³ Department of Microbiology, University of Tartu - 1; Tartu Health Care College - 2, The North Estonia Medical Centre -3

Objective

The spread of β -lactamase-producing (ESBL) Enterobacteriaceae is the contemporary worldwide problem. For better results in infection prevention and therapy antimicrobial-resistance surveillance is needed.

Aim

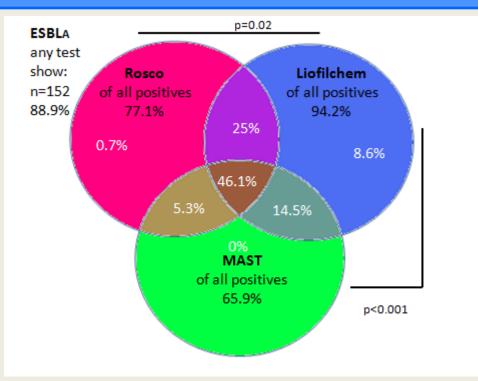
to compare results of different β-lactamases phenotypic screening and confirmatory tests (screening disks, combined disks and gradient strips) used in clinical microbiology laboratories.

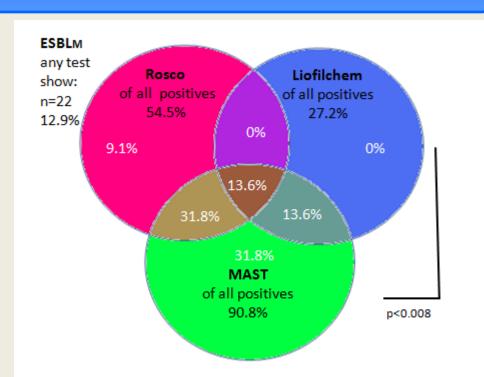
The most frequent β-lactamase was ESBL_A Outcome of all used three tests showed the matching ESBL_A in 70 of 152 any positive cases got from different tests that were 41% of all strains.

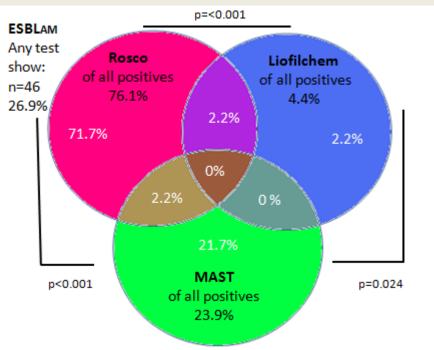
Gradient stripes showed statistically more ESBL_A but less ESBL_{AM} strains in comparing with Rosco and MAST tests.

The MAST tests showed more ESBL_M strains in comparing with gradient stripes.

Material and Methods


•Altogether, 171 strains of bacteria (78 Escherichia coli; 93 Klebsiella pneumoniae) with decreased sensitivity to third generation cephalosporines (cephotaxime; ceftasidime; cefepime; cefoxitine; cefpodoxime) were enrolled the study. Clavulanic acid and cloxacillin gradient stripes (Liofilchem) and combined disks from companies Rosco and MAST were used to determine the mechanisms of resistance.


Table. Combinations of antibiotics for phenotypic determination of resistance


	ESBL _A	ESBL _M	ESBL _{AM}
Rosco	CTX30; CAZ30; CTX+C;	CTX30; CAZ30; CTX+CX;	CTX30; CAZ30; CTX+CX;
	CAZ+C	CAZ+CX	CAZ+CX; CTX+C;CAZ+C
Mast	B - CPD + ESBLA inhibitor	C - CPD + ESBLM inhibitor	D - CPD + ESBLAM inhibitor
Liofilchem	CAZ/CAL; CTX/CTL;	CTT/CXT	CAZ/CAL; CTX/CTL; FEP/FEL;
	FEP/FEL		CTT/CXT

CTX30 - cephotaxime 30 µg; CTX+C - cephotaxime 30 µg + clavulanic acid; CTX+CX - cephotaxime 30 µg + cloxacillin; CAZ 30 - ceftazidime 30 μg; CAZ+C - ceftazidime 30 μg + clavulanic acid; CAZ+CX ceftazidime 30 µg + cloxacillin; CTT/CXT - cefotetan / cefotetan+cloxacillin; FEP/FEL - cefepime / cefepime+clavulanic acid; CTX/CTL - cefotaxime / cefotaxime+clavulanic acid; CAZ/CAL - ceftazidime / ceftazidime+ clavulanic acid; CPD - cefpodoxime 10µg.

Results

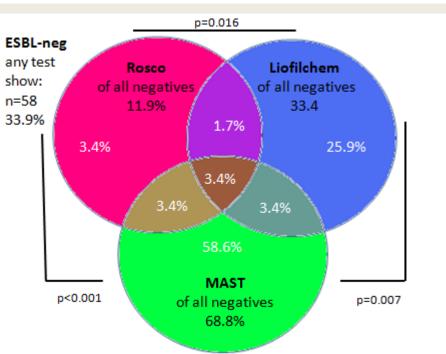


Figure. Differences in determining ESBL_{A.} ESBL_M and ESBL_{AM} in comparing with MAST and Rosco tests, and gradient strips. In calculating p value all studuy group (n=171) were considered.

Only three strains were detected as ESBL_M with listed all three tests and for ESBL_{AM} strains there were no matching results. With all three tests two strains gave similarly negative results (1%).

Conclusions

Usage of different phenotypic tests gives different results. Due to the price and work load, it would be beneficial to use the combined discs of MAST. However, until there is no molecular confirmation, we can not give recommendations.

