COMPOSITION, STRUCTURE AND DIELECTRIC PROPERTIES OF MULTIFUNCTIONAL SINGLE-PHASE Bi_{1-r}La_rFeO₃ CERAMICS A.V. Pashchenko¹, D.D. Tatarchuk², N.A. Liedienov¹, A.I. Gudimenko³, V.V. Burchovetskii¹, Y.V. Didenko², V.K. Prokopenko¹, V.P. Kladko³ and G.G. Levchenko¹ ¹Donetsk Institute for Physics and Engineering named after O.O. Galkin, NASU, 03680, Kyiv, Ukraine International ²National Technical University of Ukraine "KPI", 03056, Kyiv, Ukraine ³V.E. Lashkaryov Institute of Semiconductor Physics, NASU, 03028, Kyiv, Ukraine **Conferenceseries.com** e-mail: <u>alpash@mail.ru</u> **MATERIALS OBJECTIVES** Partial replacement of the A-cation bismuth by lanthanum in the $Bi_{1-x}La_xFeO_3$ composition leads to changing The Bi_{1-x}La_xFeO₃ (x = 0, 0.1, 0.3 and 0.5) samples were prepared by the rapid liquid-phase sintering method from stoichiometric mixtures of La₂O₃, Bi₂O₃ and Fe₂O₃ powders. The initial its structural, microstructural and dielectric properties [1-5]. The sintering possibility of the multiferroics with definite functional properties by the changing of composition, structure and its defects determines the mixture was calcined at 180 °C (4 h), then it was pressed into pellets ($\emptyset = 8 \text{ mm}$, h = 3 mm) under pressure of 0.2 GPa and sintered at $t_{ann} = 880 \text{ }^{\circ}\text{C}$ (8 min). objectives of the researching $Bi_{1-x}La_xFeO_3$ (x = 0 - 0.5). TABLE $\circ x = 0$ Molar formulas of defective perovskite structure $Bi_{1-x}La_xFeO_{3-\delta}$ 4.00 $\triangle x = 0.1$ (x = 0 - 0.5), concentration of anionic vacancies $V^{(a)}$, -1,235 $\Box \quad x = 0.3$ tolerant factor *t* and **→** ∆a/a $\diamond x = 0.5$ 3.98 relative changes of samples mass $\Delta m/m$ 10^{-1} $- \Delta \overline{R} /$ ⁰3/3 $V^{(a)}$, $\Delta m/m$, Molar formulas of real perovskite structure 10^{3} 00 01 02 03 $\{\operatorname{Bi}_{0.96}^{3+}\operatorname{V}_{0.04}^{(c)}\}_{A}[\operatorname{Fe}_{0.98}^{3+}\operatorname{V}_{0.02}^{(c)}]_{B}\operatorname{O}_{2.91}^{2-}\operatorname{V}_{0.09}^{(a)}$ 1,225 0.968 -1.477 $- \bigcirc - \bigcirc \bigcirc$ 3.0 10^{2} 3.94 $\{\mathrm{Bi}_{0.88}^{3+}\mathrm{La}_{0.10}^{3+}\mathrm{V}_{0.02}^{(c)}\}_{A}[\mathrm{Fe}_{0.94}^{3+}\mathrm{Fe}_{0.01}^{2+}\mathrm{V}_{0.05}^{(c)}]_{B}\mathrm{O}_{2.89}^{2-}\mathrm{V}_{0.11}^{(a)} \quad 3.7 \quad 0.946 \quad -1.518$ 0.1 10^{1} $\{\mathrm{Bi}_{0.69}^{3+}\mathrm{La}_{0.30}^{3+}\mathrm{V}_{0.01}^{(c)}\}_{A}[\mathrm{Fe}_{0.77}^{3+}\mathrm{Fe}_{0.21}^{2+}\mathrm{V}_{0.02}^{(c)}]_{B}\mathrm{O}_{2.85}^{2-}\mathrm{V}_{0.15}^{(a)} \ 5.0$ 0.939 -3.189 0.3 $10^{0} \ 10^{1} \ 10^{2} \ 10^{3} \ 10^{4} \ 10^{5} \ 10^{6} \ 10^{9} \ 10^{10}$ $\{\mathrm{Bi}_{0.50}^{3+}\mathrm{La}_{0.50}^{3+}\}_{A}[\mathrm{Fe}_{0.74}^{3+}\mathrm{Fe}_{0.26}^{2+}]_{B}\mathrm{O}_{2.87}^{2-}\mathrm{V}_{0.13}^{(a)}$ F, Hz**Fig. 1**. Concentration changes of the lattice parameter a and the average ionic radius \overline{R} of 4.3 0.938 -3.131 0.5 the $Bi_{1-x}La_xFeO_{3-\delta}$ perovskite structure. The inset shows the correlation of the relative parameter changes $\Delta a/a$ and the average ionic radius $\Delta \overline{R} / \overline{R}$. **─┬─//**──┬─1 x = 0.1x = 0**○ 8**/8 \triangle tan δ

F, Hz**Fig 3**. Frequency dependences of the $\varepsilon/\varepsilon_0(f)$ and $\tan\delta(f)$ of the $Bi_{0.9}La_{0.1}FeO_{3-\delta}$ ceramics.

and Pnma (x = 0.5).

 10^{1}

• The molar formulas of the $Bi_{1-x}La_xFeO_{3-\delta}$ real perovskite structure have been determined. The crystal structure is defective because of the presence of vacancy type point defects $V^{(a)}$ and $V^{(c)}$ there. The correlation between the relative parameter changes $\Delta a/a$ and the average ionic radius $\Delta \overline{R} / \overline{R}$ has been found out. • The microstructure of the Bi_{1-x}La_xFeO_{3- δ} ceramics consists of crystallites. Their size reduces from ~ 10 to ~ 1 μ m with increasing x from 0 to 0.5. • The monotone dispersion for relative permittivity $\varepsilon_0(f)$ and non-monotonic dispersion for the dielectric loss tangent tan $\delta(f)$ have been observed in the LF range from 1 Hz to 1 MHz. The Bi_{0.9}La_{0.1}FeO_{3- δ} composition has the greatest value of the dielectric permittivity: $\varepsilon = 5 \cdot 10^5$ at the 1 Hz and $\varepsilon = 209$ at the 1 MHz. The dispersion $\varepsilon/\varepsilon_0(f)$ and $\tan \delta(f)$ for all compositions is absent in the MW range from 8 to 12 GHz and their values are in the range $\varepsilon = 10.5...34.5$ and $\tan \delta = 10^{-4}...3 \cdot 10^{-3}$. The appearance of two peaks on the nonmonotonic frequency dependencies of the tan $\delta(f)$ in the LF range is caused by the presence of relaxation polarization processes in the defect structures of Bi_{1-x}La_xFeO_{3- δ}.

Fig. 4. Microstructure of the Bi_{1-x}La_xFeO_{3- δ} ceramics prepared by rapid liquid-phase sintering method (SEM-method).

CONCLUSIONS

• The crystal structure has a rhombohedral type of crystal structure distortion with changing of lattice parameters and space group from R3m (x = 0) to R3c (x = 0.1), $R\overline{3}m$ (x = 0.3)

[1] F. Matsukura, Y. Tokura and H. Ohno, Nature Nanotech. **10** (2015) 209. [2] V.S. Pokatilov, V.V. Pokatilov and A.S. Sigov, Phys. Solid State. 51 (2009) 552. [3] V.P. Pashchenko, A.A. Khor'yakov, A.V. Pashchenko, Yu.S. Prylipko and A.A. Shemyakov, Inorg. Mater. **50** (2014) 191. [4] A.V. Pashchenko, V.P. Pashchenko, V.K. Prokopenko, Yu.F. Revenko, Yu.S. Prylipko, N.A. Ledenev, G.G. Levchenko, V.P. Dyakonov and H. Szymczak, Acta Mater. 70 (2014) 218. [5] A.V. Pashchenko, D.D. Tatarchuk, N.A. Liedienov, V.V. Burchovetskii, V.K. Prokopenko, V.Ya. Sycheva, N.E. Pismenova, Y.V. Didenko and G.G. Levchenko, 2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO) (2016) 107.

0.0 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{9} 10^{10} F, Hz

Fig 2. Frequency dependences of the relative permittivity $\varepsilon/\varepsilon_0(f)$ and dielectric loss tangent $\tan\delta(f)$ of the $Bi_{1-x}La_{x}FeO_{3-\delta}$ ceramics.

REFERENCES