Effect of ammonium and aminosilane montmorillonites organo-clayson the curing kinetics of unsaturated polyester (UP) resin nanocomposites

Maria de los Angeles Vargas Tecnológico de Estudios Superiores de Ecatepec, Mexico

Abstract

The curing kinetics of UP nanocomposites prepared by incorporating different amounts of two kinds of organo-montmorillonite (organo-MMT): trimethyloctadecacylammonium chloride (TMOA) and aminopropyl-triethoxysilane (APTES) were studied by non-isothermal differential scanning calorimetry (DSC) experiments. Small angle X-ray scattering (SAXS) was used for measuring the d-spacings in the modified organo-clays, and no intercalation UP into these clays was observed for the nanocomposites. HRTEM images showed dispersed and agglomerated platelets in UP/APTES 2 and 10 wt.%. DSC analysis showed two peaks in UP resins and UP/organo-MMT, and a decrease in the exothermal peaks temperature (Tp1 and Tp2) for nanocomposites with the heating rate as compared with those of neat UP system; thus, the higher the heating rate, the higher the curing reaction rate. This effect was more clearly on the UP/MMT-APTES nanocomposites. The effective activation energies (Ea) were determined with the mode-free isoconversional Starik's method. Sesták–Berggren model was chosen to simulate the reaction rate with a good match achieved. Thermal gravimetric analysis showed that the cured UP/APTES at high concentration were slightly more stable than UP and TMOA.

Biography

Maria de los Angeles Vargas has completed her PhD from Mexico University and Post-doctoral studies from Institute of Technology Karlsruhe in Germany. She has a Lecturer position at the Higher Education Technology in Chemical Engineering Department, Mexico. She has published more than 16 papers in reputed journals and book chapters in NMR at 20 MHz: Possibilities and Challenges.

angelesvh@yahoo.com